LearnAlgebra foundationsPower rules

Multiplication and division

Exercises

Problem set

Simplify the following.

  1. -2x^2x^3
  2. 3x^2y^2x^3y^3
  3. \frac{a^{35}}{a^7}
  4. \frac{9x^{33}y^{12}}{3x^{11}y^{4}}
  5. \frac{3p^{21}}{q^{5}}\times\frac{q^{25}}{9p^{7}}
  6. \frac{5a^{36}}{b^{12}}\times\frac{b^{24}}{25a^6}
  7. \frac{2x^{20}}{y^{14}}\times\frac{y^{21}}{8x^5}
  8. \frac{7p^{14}}{q^{5}}\times\frac{q^{10}}{14p^7}

Problem set

Explain, with a reason, whether each of the following is true or false.

  1. x^{11} \times x^{10} = x^{110}
  2. \frac{p^{21}}{p^{7}} = p^{3}
  3. x^{5} \times y^{7} = xy^{12}
  4. a^{9} \times b^{4} = ab^{13}
  5. pq^{9} = p^{9}q^{9}

Problem set

Explain, with a reason, whether each of the following is true or false.

  1. x^{15} + x^{6} = x^{21}
  2. a^{19} - a^{13} = a^{6}
  3. p^{7} + p^{7} = p^{14}
  4. x^{5} + x^{5} = x^{10}
  5. a^{11} + a^{11} = 2a^{11}
  6. 7p^{5} - 4p^{5} = 3
  7. 5x^{9} - x^{9} = 5

Distributive property

Exercises

Problem set

Simplify the following.

  1. \left(pqr\right)^5
  2. \left(3mn\right)^3
  3. \left(\frac{2}{x}\right)^3
  4. 2(2x)^3
  5. 3(5x)^2
  6. \left(\frac{x}{zy}\right)^{51}
  7. \left(\frac{3a}{4bc}\right)^{17}

Problem set

Simplify the following.

  1. 2\left(\frac{2x}{y}\right)^2
  2. 4\left(\frac{2pq}{3r}\right)^3
  3. 5\left(\frac{7x}{5yz}\right)^2
  4. 3\left(\frac{2mn^{100}}{n^{99}m^2}\right)^3
  5. 5\left(\frac{q^4p}{5q^3}\right)^2

Problem set

Simplify the following.

  1. 2\left(\frac{-3x}{4y}\right)^2
  2. -5\left(\frac{-2pq}{3r}\right)^2

Problem set

Explain, with a reason, whether each of the following is true or false.

  1. (ab)^{21} = a^{21}b^{21}
  2. \frac{p^{17}}{q^{11}} = \left(\frac{p}{q}\right)^6
  3. (x+y)^{15} = x^{15}+y^{15}
  4. (p-q)^{11} = p^{11}-q^{11}

Problem set

Explain, with a reason, whether each of the following is true or false.

  1. \left(\frac{3a}{2b}\right)^{9} = \frac{3a^9}{2b^9}
  2. \left(\frac{5x}{yz}\right)^{7} = \frac{5x^7}{y^7z^7}
  3. \left(\frac{-3a}{4bc}\right)^{2} = \frac{-3^2a^2}{4^2b^2c^2}
  4. \left(\frac{5x}{-3yz}\right)^{4} = \frac{5^4x^4}{-3^4y^4z^4}
  5. (3p-4q)^{5} = 3^5p^5-4^5q^5
  6. (2a+5b)^{7} = 2^7a^7+5^7b^7

Problem set

Explain, with a reason, whether each of the following is true or false.

  1. a^{11}b^{11} = (ab)^{11}
  2. x^{7}y^{7} = (xy)^{14}
  3. p^{9}+q^{9} = (p+q)^{9}
  4. a^{7}-b^{7} = (a-b)^{7}

Power of a power

Exercises

Problem set

Explain, with a reason, whether each of the following is true or false.

  1. (a^5)^2 = a^{10}
  2. (x^7)^2 = x^{49}
  3. p^{8^2} = p^{64}
  4. a^{3^3} = (a^3)^3
  5. x^{2^3} = (x^2)^3

Zero and negative exponents

Exercises

Problem set

Evaluate the following.

  1. 0.1^4
  2. (-0.1)^4
  3. -0.1^4
  4. 10^{-2}
  5. -10^{-2}
  6. (-10)^{-2}
  7. 2^{-4}
  8. -2^{-4}
  9. (-2)^{-4}

Problem set

Evaluate the following.

  1. 5^{-2}
  2. (-5)^{-2}
  3. -5^{-2}
  4. 0.5^{-2}
  5. (-0.5)^{-2}
  6. -0.5^{-2}
  7. (\frac{1}{2})^{2}
  8. (\frac{1}{2})^{-2}

Problem set

Explain, with a reason, whether each of the following is true or false.

  1. 3^0 = 0
  2. 5^0 = 7^0
  3. 9^0 = (-9)^0
  4. a^{-7} = -a^7
  5. x^{-81} = \frac{1}{-x^{81}}
  6. 3p^{-5} = \frac{1}{3p^{5}}
  7. (-3ab)^{-2} = \frac{1}{-9a^2b^2}

Problem set

Simplify the following.

  1. \frac{x^{-5}}{x^{-8}}
  2. \frac{a^{-20}}{a^{-10}}
  3. \frac{p^{-18}}{p^{-13}}

Problem set

Simplify the following.

  1. \frac{x^{-4}}{y^{-7}}
  2. \frac{a^{-5}}{b^{-9}}
  3. \frac{p^{-25}}{q^{-15}}

Fractional exponents

Exercises

Problem set

Evaluate the following.

  1. 9^{1/2}
  2. 27^{1/3}
  3. 16^{1/4}
  4. 0.01^{1/2}
  5. (-8)^{1/3}
  6. (-1000)^{1/3}
  7. (-32)^{1/5}

Problem set

Evaluate the following.

  1. 9^{-1/2}
  2. (-8)^{-1/3}
  3. (-125)^{-1/3}
  4. (-0.001)^{-1/3}
  5. 16^{3/2}

Problem set

Evaluate the following.

  1. 25^{3/2}
  2. 8^{4/3}
  3. 27^{2/3}
  4. \left(\frac{1}{16}\right)^{3/2}
  5. \left(\frac{16}{81}\right)^{3/4}
  6. \left(\frac{125}{8}\right)^{2/3}

Problem set

Evaluate the following.

  1. 4^{0.5}
  2. 4^{-0.5}
  3. 10000^{0.25}
  4. 10000^{-0.25}
  5. 32^{0.2/0.25}

Combinations

Exercises

Problem set

Simplify the following.

  1. \left(\frac{2a}{3b}\right)^{100}\times \left(\frac{3b}{a}\right)^{51}
  2. \left(\frac{5x}{7y}\right)^{40}\times \left(\frac{7y}{5x}\right)^{73}
  3. 4(-5a^{-3}b^3)^2
  4. -5(-2p^{-2}q^2)^4
  5. -2(-3a^{-2}b^2c^{-6})^2

Problem set

Simplify the following.

  1. 3\left(\frac{-2a^{-3}b^2}{a^3}\right)^2
  2. -4\left(\frac{-3a^3b^2}{b^{-3}a^5}\right)^{-2}
  3. -3\left(\frac{-2a^3b^2}{b^{-3}a^5}\right)^{-3}
  4. -2\left(\frac{-3x^3y^2x^4}{y^{-3}x^5y^7}\right)^{-4}
  5. \left(\frac{-2a^2}{b^2}\right)^2\left(\frac{b}{2a}\right)^3
  6. \left(\frac{-x^2}{2y^3z}\right)^2\left(-\frac{x}{3y^2z}\right)^{-2}

Solving equations

Variable in the exponent

Exercises

Problem set

Solve for x.

  1. 32 = 2^x
  2. 3^x = 81
  3. 0.0001 = 0.1^x
  4. 16 = (-4)^x
  5. 81 = (-3)^x
  6. 0.01 = (-0.1)^x
  7. -0.001 = (-0.1)^x
  8. -25 = -5^x
Problem set

Solve for x.

  1. 3^x = 9^5
  2. 5^x = 25^{11}
  3. 10^x = 1000^{5}
  4. 2^x = 16^4
  5. 0.1^x = 0.001^7
  6. 10^x = 0.1^4
  7. 2^x = 0.5^9
  8. 10^x = 0.001^6
Problem set

Solve for x.

  1. 3^{2-x} = 81^2
  2. 2^{-x-7} = 16^{2-x}
  3. 10^{3x+7} = 10000^{x-5}
  4. 5^{2x+9} = 125^{8-x}
  5. 0.1^{11-x} = 10^{2x-5}
  6. 2^{3x} = 0.5^{8-x}
  7. 5^{x+4} = 0.2^{x+10}
Problem set

Solve for x.

  1. 8^x = 4^9
  2. 25^x = 125^4
  3. 4^{3+x} = 8^{x-10}
  4. 9^{2x-1} = 27^{4-x}
  5. 125^{-3-5x} = 25^{8-10x}
  6. 100^{7-5x} = 0.1^{3x+7}
  7. 8^{4x+3} = 0.5^{13-x}
Problem set

Solve for x.

  1. 9^{2x}\times 9^5 = 3^{x}\times 3^{19}
  2. (0.1)^{5-x}\times (0.01)^{2x-10}=(0.001)^4
  3. \frac{3^{x-1}}{9^{1-x}} = 27^{50}
  4. 5^{2x+4} = \frac{125^{3-x}}{25^{10}}
  5. 2^{x^2} = 8^3
Problem set

Solve for x.

  1. 5^{2x-3} = 0.2^{2x-5}
  2. \frac{2^{x+1}}{0.5^{2x+1}} = 1
  3. (a^{x})^{6x} = (a^3)^8
Problem set

Solve for x.

  1. 5\times 2^{101}+12\times 2^{99} = 2^x
  2. 20\times 4^{50}+24\times 2^{99} = 8^x
  3. 3^{27^x} = 27^{3^x}
  4. 2^{256^x} = 256^{2^x}
  5. 7^{\left(7^7\right)^x} = \left(7^7\right)^{7^x}

Variable in the base

Exercises

Problem set

Solve for x.

  1. 16 = x^4
  2. -125 = x^3
  3. 0.008 = x^3
  4. 0.0001 = x^2
  5. 0.5 = x^{-1}
  6. -0.2 = x^{-1}
  7. -125 = -x^3
Problem set

Solve for x.

  1. 81^3 = x^6
  2. 2^{100}\times 3^{50} = x^{25}
  3. 5^{22}\times\left(x^2\right)^5=\frac{\left(x^3\right)^7}{7^{11}}
  4. x^5\times 5^{15} = x^{20}
  5. x^{50} = x^{-50}
  6. \frac{x^{39}}{x^3} = x^{13}
Problem set

Solve for x.

  1. 5x^3 = 2x^3 + 24
  2. 5x^3 = -81 + 2x^3

Miscellaneous

Exercises

Problem set

  1. Name the smallest and biggest of the following: (0.99)^{100}, (0.99)^{200}, (0.99)^{300}
  2. Name the smallest and biggest of the following: (0.1)^{100}, (0.01)^{40}, (0.001)^{30}
  3. \left(\left(\left((-1)^{-1}\right)^{-1}\right)^{-1}\right)^{-1}
  4. \left(\left(\left(\left((-0.1)^{-1}\right)^{-1}\right)^{-1}\right)^{-1}\right)^{-1}