LearnMath circleMathematical induction

Exercises

Problem set

Prove each of the following using mathematical induction.

  1. 2^n > 6n for all n\ge 6.
  2. n^n > n! for all n \ge 2.
  3. n! > 2^n for all n \ge 4.
  4. 1+2+3+\cdots+n = \frac{n(n+1)}{2}, for all n\in \mathbb{N}.
  5. 2+4+6+\cdots+2n = n(n+1), for all n\in \mathbb{N}.
  6. 1+3+5+\cdots+(2n-1) = n^2, for all n\in \mathbb{N}.
  7. 1+4+7+\cdots+(3n-2) = \frac{n(3n-1)}{2}, for all n\in \mathbb{N}.
  8. 1^2+2^2+3^2+\cdots+n^2 = \frac{n(n+1)(2n+1)}{6}, for all n \in \mathbb{N}.

Problem set

  1. Prove that 7 \mid (8^n-1), for all n\in\mathbb{N}.
  2. Prove that 19 \mid (2^{2k}5^k - 1), for all n\in\mathbb{N}.
  3. Prove that (x-1) \mid (x^n-1), for all n\in\mathbb{N}.
  4. Binomial theorem states (x+y)^n = {n \choose 0}x^n + {n \choose 1}x^{n-1}y + {n \choose 2}x^{n-2}y^2+ \cdots + {n \choose {n-1}}xy^{n-1} + {n \choose n}y^n, where n is a natural number. Prove the theorem.
  5. The nth term of the Fibonacci sequence is defined by f_1 = 1, f_2 = 1 and f_{n+2} = f_n + f_{n+1}. Prove that for all n\in\mathbb{N},

    1. f_n < 2^n
    2. f_n = \frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n\right]